Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Sleep ; 47(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38227834

RESUMO

Narcolepsy type 1 (NT1), characterized by the loss of hypocretin/orexin (HCRT) production in the lateral hypothalamus, has been linked to Pandemrix vaccination during the 2009 H1N1 pandemic, especially in children and adolescents. It is still unknown why this vaccination increased the risk of developing NT1. This study investigated the effects of Pandemrix vaccination during adolescence on Hcrt mRNA expression in mice. Mice received a primary vaccination (50 µL i.m.) during prepubescence and a booster vaccination during peri-adolescence. Hcrt expression was measured at three-time points after the vaccinations. Control groups included both a saline group and an undisturbed group of mice. Hcrt expression was decreased after both Pandemrix and saline injections, but 21 days after the second injection, the saline group no longer showed decreased Hcrt expression, while the Pandemrix group still exhibited a significant reduction of about 60% compared to the undisturbed control group. This finding suggests that Pandemrix vaccination during adolescence influences Hcrt expression in mice into early adulthood. The Hcrt mRNA level did not reach the low levels known to induce NT1 symptoms, instead, our finding supports the multiple-hit hypothesis of NT1 that states that several insults to the HCRT system may be needed to induce NT1 and that Pandemrix could be one such insult.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Narcolepsia , Orexinas , Animais , Camundongos , Regulação para Baixo , Vacinas contra Influenza/efeitos adversos , Narcolepsia/etiologia , Orexinas/genética , Orexinas/metabolismo , RNA Mensageiro , Vacinação/efeitos adversos
2.
Eur J Neurosci ; 58(9): 4002-4010, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37818927

RESUMO

Recent studies have focused on how sickness behaviours, including lethargy, are coordinated in the brain in response to peripheral infections. Decreased hypocretin (orexin) signalling is associated with lethargy and previous research suggests that hypocretin signalling is downregulated during sickness. However, there are studies that find increases or no change in hypocretin signalling during sickness. It is further unknown whether hypocretin receptor expression changes during sickness. Using lipopolysaccharide (LPS) to induce sickness in female mice, we investigated how LPS-injection affects gene expression of hypocretin receptors and prepro-hypocretin as well as hypocretin-1 peptide concentrations in brain tissue. We found that hypocretin receptor 1 gene expression was downregulated during sickness in the lateral hypothalamus and ventral tegmental area, but not in the dorsal raphe nucleus or locus coeruleus. We found no changes in hypocretin receptor 2 expression. Using a gene expression calculation that accounts for primer efficiencies and multiple endogenous controls, we were unable to detect changes in prepro-hypocretin expression. Using radioimmunoassay, we found no change in hypocretin-1 peptide in rostral brain tissue. Our results indicate that hypocretin receptor expression can fluctuate during sickness, adding an additional level of complexity to understanding hypocretin signalling during sickness.


Assuntos
Região Hipotalâmica Lateral , Neuropeptídeos , Camundongos , Feminino , Animais , Orexinas/metabolismo , Região Hipotalâmica Lateral/metabolismo , Receptores de Orexina/metabolismo , Neuropeptídeos/metabolismo , Área Tegmentar Ventral/metabolismo , Letargia/metabolismo , Lipopolissacarídeos/metabolismo , Hipotálamo/metabolismo
3.
Sleep Med ; 110: 91-98, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37544279

RESUMO

BACKGROUND: The diagnosis of narcolepsy is based on clinical information, combined with polysomnography (PSG) and the Multiple Sleep Latency Test (MSLT). PSG and the MSLT are moderately reliable at diagnosing narcolepsy type 1 (NT1) but unreliable for diagnosing narcolepsy type 2 (NT2). This is a problem, especially given the increased risk of a false-positive MSLT in the context of circadian misalignment or sleep deprivation, both of which commonly occur in the general population. AIM: We aimed to clarify the accuracy of PSG/MSLT testing in diagnosing NT1 versus controls without sleep disorders. Repeatability and reliability of PSG/MSLT testing and temporal changes in clinical findings of patients with NT1 versus patients with hypersomnolence with normal hypocretin-1 were compared. METHOD: 84 patients with NT1 and 100 patients with non-NT1-hypersomnolence disorders, all with congruent cerebrospinal fluid hypocretin-1 (CSF-hcrt-1) levels, were included. Twenty-five of the 84 NT1 patients and all the hypersomnolence disorder patients underwent a follow-up evaluation consisting of clinical assessment, PSG, and a modified MSLT. An additional 68 controls with no sleep disorders were assessed at baseline. CONCLUSION: Confirming results from previous studies, we found that PSG and our modified MSLT accurately and reliably diagnosed hypocretin-deficient NT1 (accuracy = 0.88, reliability = 0.80). Patients with NT1 had stable clinical and electrophysiological presentations over time that suggested a stable phenotype. In contrast, the PSG/MSLT results of patients with hypersomnolence, and normal CSF-hcrt-1 had poor reliability (0.32) and low repeatability.


Assuntos
Distúrbios do Sono por Sonolência Excessiva , Narcolepsia , Humanos , Polissonografia/métodos , Orexinas , Latência do Sono/fisiologia , Reprodutibilidade dos Testes , Narcolepsia/diagnóstico , Narcolepsia/líquido cefalorraquidiano , Distúrbios do Sono por Sonolência Excessiva/diagnóstico
4.
Sleep ; 46(9)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37210587

RESUMO

Narcolepsy type 1 (NT1) is a neurological disorder caused by disruption of hypocretin (HCRT; or orexin) neurotransmission leading to fragmented sleep/wake states, excessive daytime sleepiness, and cataplexy (abrupt muscle atonia during wakefulness). Electroencephalography and electromyography (EEG/EMG) monitoring is the gold standard to assess NT1 phenotypical features in both humans and mice. Here, we evaluated the digital ventilated home-cage (DVC®) activity system as an alternative to detect NT1 features in two NT1 mouse models: the genetic HCRT-knockout (-KO) model, and the inducible HCRT neuron-ablation hcrt-tTA;TetO-DTA (DTA) model, including both sexes. NT1 mice exhibited an altered dark phase activity profile and increased state transitions, compared to the wild-type (WT) phenotype. An inability to sustain activity periods >40 min represented a robust activity-based NT1 biomarker. These features were observable within the first weeks of HCRT neuron degeneration in DTA mice. We also created a nest-identification algorithm to differentiate between inactivity and activity, inside and outside the nest as a sleep and wake proxy, respectively, showing significant correlations with EEG/EMG-assessed sleep/wake behavior. Lastly, we tested the sensitivity of the activity system to detect behavioral changes in response to interventions such as repeated saline injection and chocolate. Surprisingly, daily consecutive saline injections significantly reduced activity and increased nest time of HCRT-WT mice. Chocolate increased total activity in all mice, and increased the frequency of short out-of-nest inactivity episodes in HCRT-KO mice. We conclude that the DVC® system provides a useful tool for non-invasive monitoring of NT1 phenotypical features, and has the potential to monitor drug effects in NT1 mice.


Assuntos
Narcolepsia , Neuropeptídeos , Humanos , Masculino , Feminino , Camundongos , Animais , Orexinas/farmacologia , Neuropeptídeos/genética , Narcolepsia/diagnóstico , Narcolepsia/genética , Sono/fisiologia , Vigília/fisiologia , Progressão da Doença
5.
Sleep Med ; 101: 213-220, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36427467

RESUMO

STUDY OBJECTIVES: The assay currently used worldwide to measure cerebrospinal fluid hypocretin-1 (CSF-hcrt-1) for diagnosing narcolepsy uses a competitive radioimmunoassay with polyclonal anti-hcrt-1 antibodies. This assay detects multiple hypocretin-1 immunoreactive species in the CSF that are all derived from full-length hcrt-1. We aimed to revalidate CSF-hcrt-1 cut-offs for narcolepsy type 1 (NT1) diagnosis and to evaluate temporal changes in CSF-hcrt-1 levels in patients suspected of having central hypersomnia. METHOD: We carried out a repeat lumbar puncture with a mean follow-up of 4.0 years, to measure CSF-hcrt-1 in patients suspected of having central hypersomnia in a follow-up study. Data from CSF samples of patients with NT1 and of controls without known hypersomnia, from the Italian-Stanford and Danish populations, were examined using a receiver-operating characteristic analysis. RESULTS: The optimal CSF-hcrt-1 cut-offs for identifying NT1 were 129 pg/ml and 179 pg/ml for the Italian-Stanford and Danish populations, respectively. The sensitivity was 0.93-0.99 and the specificity was 1. Follow-up lumbar puncture measurements of CSF-hcrt-1 were obtained from 73 patients. 30 of 32 patients with low CSF-hcrt-1 levels continued to be categorized as low, with an unaltered diagnosis; two patients showed a marked increase in CSF-hcrt-1, attaining normal values at follow-up. One of these patients relapsed to low CSF-hcrt-1 after follow-up. All 41 patients with normal CSF-hcrt-1 at baseline had normal CSF-hcrt-1 at follow-up. CONCLUSION: CSF-hcrt-1 measurement can provide an accurate test for diagnosing NT1, although it is important to validate the CSF-hcrt-1 cut-off for specific testing locations. Stable CSF-hcrt-1 levels support the already established prognosis of narcolepsy as permanent once the disorder has fully developed.


Assuntos
Distúrbios do Sono por Sonolência Excessiva , Narcolepsia , Humanos , Orexinas , Seguimentos , Narcolepsia/diagnóstico , Narcolepsia/líquido cefalorraquidiano , Distúrbios do Sono por Sonolência Excessiva/diagnóstico , Dinamarca
6.
Front Cell Dev Biol ; 10: 976549, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046338

RESUMO

Stellate cells are principal neurons in the entorhinal cortex that contribute to spatial processing. They also play a role in the context of Alzheimer's disease as they accumulate Amyloid beta early in the disease. Producing human stellate cells from pluripotent stem cells would allow researchers to study early mechanisms of Alzheimer's disease, however, no protocols currently exist for producing such cells. In order to develop novel stem cell protocols, we characterize at high resolution the development of the porcine medial entorhinal cortex by tracing neuronal and glial subtypes from mid-gestation to the adult brain to identify the transcriptomic profile of progenitor and adult stellate cells. Importantly, we could confirm the robustness of our data by extracting developmental factors from the identified intermediate stellate cell cluster and implemented these factors to generate putative intermediate stellate cells from human induced pluripotent stem cells. Six transcription factors identified from the stellate cell cluster including RUNX1T1, SOX5, FOXP1, MEF2C, TCF4, EYA2 were overexpressed using a forward programming approach to produce neurons expressing a unique combination of RELN, SATB2, LEF1 and BCL11B observed in stellate cells. Further analyses of the individual transcription factors led to the discovery that FOXP1 is critical in the reprogramming process and omission of RUNX1T1 and EYA2 enhances neuron conversion. Our findings contribute not only to the profiling of cell types within the developing and adult brain's medial entorhinal cortex but also provides proof-of-concept for using scRNAseq data to produce entorhinal intermediate stellate cells from human pluripotent stem cells in-vitro.

7.
Sleep ; 45(7)2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35266540

RESUMO

Narcolepsy type 1 (NT1) is a sleep-wake disorder caused by selective loss of hypocretin (HCRT, also called orexin) neurons. Although the prevalence of NT1 is equal in men and women, sex differences in NT1 symptomatology have been reported in humans and other species. Yet, most preclinical studies fail to include females, resulting in gender bias within translational drug development. We used hcrt-tTA;TetO DTA mice (NT1 mice) that lose their HCRT neurons upon dietary doxycycline removal to examine in detail the effect of sex on NT1 symptoms and sleep-wake characteristics. We recorded 24-h electroencephalography (EEG), electromyography (EMG), and video in adult male and female NT1 mice for behavioral state quantification. While conducting this study, we recognized another type of behavioral arrest different from cataplexy: shorter lasting and with high δ power. We termed these delta attacks and propose a set of criteria for quantifying these in future research. Our findings show that both sexes exhibit high behavioral state instability, which was markedly higher in females with more behavioral arrests interrupting the wake episodes. Females exhibited increased wake at the expense of sleep during the dark phase, and decreased rapid eye movement (REM) sleep during the 24-h day. During the dark phase, fast-δ (2.5-4 Hz) in non-rapid eye movement (NREM) sleep and θ (6-10 Hz) EEG spectral power in REM sleep were lower in females compared to males. We demonstrate that biologically driven sex-related differences exist in the symptomatology of NT1 mice which calls for including both sexes in future research.


Assuntos
Cataplexia , Narcolepsia , Neuropeptídeos , Animais , Modelos Animais de Doenças , Eletroencefalografia , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Masculino , Camundongos , Neuropeptídeos/farmacologia , Orexinas/farmacologia , Caracteres Sexuais , Sexismo , Sono , Vigília/fisiologia
8.
Expert Opin Ther Targets ; 25(7): 559-572, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34402358

RESUMO

INTRODUCTION: Narcolepsy type 1 (NT1) and type 2 (NT2) are chronic sleep disorders primarily characterized by excessive daytime sleepiness (EDS), disturbed sleep-wake regulation, and reduced quality of life. The precise disease mechanism is unclear, but it is certain that in NT1 the hypocretin/orexin (Hcrt) system is affected. Current treatment options are symptomatic - they improve EDS and/or reduce cataplexy. Complete symptom control is relatively rare - particularly problematic is residual daytime sleepiness. AREAS COVERED: This review discusses various emerging treatment targets for narcolepsy. The focus is on the Hcrt receptors but included are also wake-promoting pathways, and sleep-stabilization through GABAergic mechanisms. Additionally, we discuss the potential of targeting the likely autoimmune basis of narcolepsy. PubMed and ClinicalTrials.gov was searched through June 2021 for relevant information. EXPERT OPINION: Targeting Hcrt receptors has the potential to alleviate narcolepsy symptoms. Results from ongoing drug development programs are promising, but care needs to be taken when evaluating potential side effects. It is still largely unknown what roles Hcrt receptors play in the periphery and how these might be affected by treatment. Immunotherapies could potentially target the core pathophysiology of narcolepsy, but more work is needed to identify the best therapeutic target for this approach.

9.
Handb Clin Neurol ; 181: 161-172, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34238455

RESUMO

Narcolepsy Type 1 (NT1) is hypothesized to be an autoimmune disease targeting the hypocretin/orexin neurons in the lateral hypothalamus. Ample genetic and epidemiologic evidence point in the direction of a pathogenesis involving the immune system. Many autoantibodies have been detected in blood samples from NT1 patients, but none in a consistent manner. Importantly, T cells directed toward hypocretin/orexin neurons have been detected in samples from NT1 patients. However, it remains to be seen if these potentially autoreactive T cells are also present in the hypothalamus and if they are pathogenic. For this reason, NT1 does still not fully meet the criteria for being classified as a genuine autoimmune disease, even though more and more results are pointing in that direction as will be described in this chapter. The autoimmune hypothesis has led to many attempts at slowing or stopping disease progression with immunomodulatory treatment, but so far the overall results have not been very encouraging. It is clear that more research into the pathogenesis of NT1 is needed to establish the precise role of the immune system in disease development.


Assuntos
Doenças Autoimunes , Narcolepsia , Autoanticorpos , Humanos , Hipotálamo , Narcolepsia/diagnóstico , Narcolepsia/terapia , Neurônios
10.
Sleep Med ; 85: 1-7, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34265481

RESUMO

OBJECTIVE: Differentiating between the central hypersomnias presents a challenge to the diagnosis of patients with hypersomnolence. Actitigraphy may support efforts to distinguish them. We aimed to evaluate: 1) the ability of actigraphy to quantify sleep continuity measures in comparison with polysomnography in patients with hypersomnolence; 2) whether actigraphy can distinguish patients with hypersomnolence with normal hypocretin-1 in cerebrospinal fluid from patients with narcolepsy type 1 and from sleep-healthy controls; and 3) the distinct activity profiles and circadian rhythms of patients with narcolepsy type 1, patients with hypersomnolence with normal hypocretin-1 in cerebrospinal fluid, and sleep-healthy controls. METHOD: Polysomnography, multiple sleep latency tests and actigraphy were conducted in 14 patients with narcolepsy type 1, 29 patients with hypersomnolence with normal hypocretin-1 in cerebrospinal fluid and 15 sleep-healthy controls. RESULTS: Actigraphy quantified several sleep continuity measures consistently with polysomnography in all the patients. Actigraphy distinguished patients with hypersomnolence with normal hypocretin-1 in cerebrospinal fluid from patients with narcolepsy type 1 and sleep-healthy controls. Patients with narcolepsy type 1 had poor sleep quality and altered circadian rest-activity rhythm compared with controls. CONCLUSION: Actigraphy is an adequate tool for establishing the amount of night sleep and supports the differential diagnosis of patients with hypersomnolence.


Assuntos
Distúrbios do Sono por Sonolência Excessiva , Narcolepsia , Actigrafia , Distúrbios do Sono por Sonolência Excessiva/diagnóstico , Humanos , Narcolepsia/diagnóstico , Orexinas , Polissonografia , Sono
11.
Eur J Neurosci ; 54(2): 4445-4455, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33942407

RESUMO

γ-Aminobutyric acid (GABA) acting through heteropentameric GABAA receptors plays a pivotal role in the sleep-promoting circuitry. Whereas the role of the different GABAA receptor α-subunits in sleep regulation and in mediating the effect of benzodiazepines for treatment of insomnia is well-described, the ß-subunits are less studied. Here we report the first study characterizing sleep in mice lacking the GABAA receptor ß1 -subunit (ß1-/- mice). We show that ß1-/- mice have a distinct and abnormal sleep phenotype characterized by increased delta power in non-rapid eye movement (NREM) sleep and decreased theta activity in rapid eye movement (REM) sleep compared to ß1+/+ mice, without any change in the overall sleep-wake architecture. From GABAA receptor-specific autoradiography, it is further demonstrated that functional ß1 -subunit-containing GABAA receptors display the highest binding levels in the hippocampus and frontal cortex. In conclusion, this study suggests that the GABAA receptor ß1 -subunit does not play an important role in sleep initiation or maintenance but instead regulates the power spectrum and especially the expression of theta rhythm. This provides new knowledge on the complex role of GABAA receptor subunits in sleep regulation. In addition, ß1-/- mice could provide a useful mouse model for future studies of the physiological role of delta and theta rhythms during sleep.


Assuntos
Receptores de GABA-A , Sono REM , Animais , Eletroencefalografia , Camundongos , Camundongos Knockout , Receptores de GABA-A/genética , Sono , Ácido gama-Aminobutírico
13.
Pharmacol Rep ; 71(5): 926-928, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31450027

RESUMO

BACKGROUND: Narcolepsy with cataplexy is a neurological sleep disorder, which is believed to arise from the autoimmune destruction of hypocretin-producing neurons. The purinergic receptor P2Y11 is associated with narcolepsy in genome-wide association studies, and P2RY11 sequencing has further revealed eight rare missense mutations associated with the disease. Some of these mutations alter the signaling properties of P2Y11, but for some, no functional effects have been discovered so far. METHODS: This study examined the surface expression of the eight narcolepsy-associated P2Y11 mutations using an in vitro surface expression assay. RESULTS: The assay showed excellent discrimination between cells transfected with tagged wild type and the untagged P2Y11 receptor, proving complete specificity towards the 3HA-N-tag used for the assay. Our results show a decreased surface expression of the R307W P2Y11 mutant and a surface expression similar to wild type for the other seven mutants. CONCLUSION: Based on the present findings, alteration in surface expression is not likely to play a role in how P2Y11 influences narcolepsy pathogenesis. This is important because intact surface expression increases the usefulness of P2Y11 as a future drug target.


Assuntos
Expressão Gênica , Narcolepsia/genética , Receptores Purinérgicos P2/genética , Variação Genética , Células HEK293 , Humanos , Mutação , Neurônios/metabolismo , Orexinas/metabolismo , Transfecção
14.
Nat Commun ; 10(1): 837, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30783092

RESUMO

Narcolepsy Type 1 (NT1) is a neurological sleep disorder, characterized by the loss of hypocretin/orexin signaling in the brain. Genetic, epidemiological and experimental data support the hypothesis that NT1 is a T-cell-mediated autoimmune disease targeting the hypocretin producing neurons. While autoreactive CD4+ T cells have been detected in patients, CD8+ T cells have only been examined to a minor extent. Here we detect CD8+ T cells specific toward narcolepsy-relevant peptides presented primarily by NT1-associated HLA types in the blood of 20 patients with NT1 as well as in 52 healthy controls, using peptide-MHC-I multimers labeled with DNA barcodes. In healthy controls carrying the disease-predisposing HLA-DQB1*06:02 allele, the frequency of autoreactive CD8+ T cells was lower as compared with both NT1 patients and HLA-DQB1*06:02-negative healthy individuals. These findings suggest that a certain level of CD8+ T-cell reactivity combined with HLA-DQB1*06:02 expression is important for NT1 development.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Cadeias beta de HLA-DQ/genética , Narcolepsia/imunologia , Orexinas/imunologia , Peptídeos/imunologia , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Narcolepsia/genética , Neurônios/metabolismo , Orexinas/metabolismo
15.
Dan Med J ; 65(11)2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30382019

RESUMO

INTRODUCTION: Human papilloma virus (HPV) vaccine uptake in girls and women is dropping markedly in some countries. Concern about the presumed side effects is the commonest reason why. Reports about side effects include specific sleep complaints such as excessive daytime sleepiness, altered dream activity and periods of muscle weakness. These symptoms are commonly seen in individuals with narcolepsy type 1. We aimed to evaluate whether HPV vaccination was associated with the development of hypocretin-deficient narcolepsy. METHODS: We report the evaluation for sleep disorders, including narcolepsy, in 29 HPV-vaccinated girls and women who were submitted for evaluation of narcolepsy. All were evaluated by polysomnography and the Multiple Sleep Latency Test, and 18 individuals were also evaluated by measures of cerebrospinal fluid hypocretin-1 concentration. RESULTS: None of the 29 girls and women showed signs of narcolepsy type 1. CONCLUSION: Our results do not suggest that an association exists between HPV vaccination and the development of narcolepsy type 1. FUNDING: none. TRIAL REGISTRATION: not relevant.


Assuntos
Narcolepsia/etiologia , Vacinas contra Papillomavirus/efeitos adversos , Adolescente , Adulto , Criança , Dinamarca/epidemiologia , Feminino , Humanos , Narcolepsia/epidemiologia , Orexinas/líquido cefalorraquidiano , Polissonografia , Estudos Retrospectivos , Sono , Adulto Jovem
16.
Mol Brain ; 11(1): 36, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970123

RESUMO

Major Histocompability Complex I (MHC-I) molecules present cellularly derived peptides to the adaptive immune system. Generally MHC-I is not expressed on healthy post-mitotic neurons in the central nervous system, but it is known to increase upon immune activation such as viral infections and also during neurodegenerative processes. MHC-I expression is known to be regulated by the DNA methyltransferase DNMT1 in non-neuronal cells. Interestingly DNMT1 expression is high in neurons despite these being non-dividing. This suggests a role for DNMT1 in neurons beyond the classical re-methylation of DNA after cell division. We thus investigated whether DNMT1 regulates MHC-I in post-mitotic neurons. For this we used primary cultures of mouse cerebellar granule neurons (CGNs). Our results showed that knockdown of DNMT1 in CGNs caused upregulation of some, but not all subtypes of MHC-I genes. This effect was synergistically enhanced by subsequent IFNγ treatment. Overall MHC-I protein level was not affected by knockdown of DNMT1 in CGNs. Instead our results show that the relative MHC-I expression levels among the different MHC subtypes is regulated by DNMT1 activity. In conclusion, we show that while the mouse H2-D1/L alleles are suppressed in neurons by DNMT1 activity under normal circumstances, the H2-K1 allele is not. This finding is particularly important in two instances. One: in the context of CNS autoimmunity with epitope presentation by specific MHC-I subtypes where this allele specific regulation might become important; and two: in amyotropic lateral sclerosis (ALS) where H2-K but not H2-D protects motor neurons from ALS astrocyte-induced toxicity in a mouse model of ALS.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Regulação da Expressão Gênica , Genes MHC Classe I , Mitose/genética , Neurônios/citologia , Neurônios/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Interferon gama/metabolismo , Camundongos , RNA Interferente Pequeno/metabolismo , Sinapses/metabolismo
17.
Sleep Med ; 44: 53-60, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29530370

RESUMO

BACKGROUND: Type 1 narcolepsy (NT1) is a central hypersomnia linked to the destruction of hypocretin-producing neurons. A great body of genetic and epidemiological data points to likely autoimmune disease aetiology. Recent reports have characterized peripheral blood T-cell subsets in NT1, whereas data regarding the cerebrospinal fluid (CSF) immune cell composition are lacking. The current study aimed to characterize the T-cell and natural killer (NK) cell subsets in NT1 patients with long disease course. METHODS: Immune cell subsets from CSF and peripheral blood mononuclear cell (PBMC) samples were analysed by flow cytometry in two age-balanced and sex-balanced groups of 14 NT1 patients versus 14 healthy controls. The frequency of CSF cell groups was compared with PBMCs. Non-parametric tests were used for statistical analyses. RESULTS: The NT1 patients did not show significant differences of CSF immune cell subsets compared to controls, despite a trend towards higher CD4+ terminally differentiated effector memory T cells. T cells preferentially displayed a memory phenotype in the CSF compared to PBMCs. Furthermore, a reduced frequency of CD4+ terminally differentiated effector memory T cells and an increased frequency of NK CD56bright cells was observed in PBMCs from patients compared to controls. Finally, the ratio between CSF and peripheral CD4+ terminally differentiated effector memory T cells was two-fold increased in NT1 patients versus controls. CONCLUSIONS: Significant differences in PBMCs and in CSF/PBMC ratios of immune cell profile were found in NT1 patients compared to healthy controls. These differences might have arisen from the different HLA status, or be primary or secondary to hypocretin deficiency. Further functional studies in patients close to disease onset are required to understand NT1 pathophysiology.


Assuntos
Citometria de Fluxo/métodos , Narcolepsia/líquido cefalorraquidiano , Narcolepsia/imunologia , Subpopulações de Linfócitos T/citologia , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Células Matadoras Naturais/citologia , Masculino
18.
Purinergic Signal ; 14(1): 83-90, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29290027

RESUMO

The P2X7 receptor is a frequently studied member of the purinergic receptor family signalling via channel opening and membrane pore formation. Fluorescent imaging is an important molecular method for studying cellular receptor expression and localization. Fusion of receptors to fluorescent proteins might cause major functional changes and requires careful functional evaluation such as has been done for the rat P2X7 receptor. This study examines fusion constructs of the human P2X7 receptor. We assessed surface expression, channel opening with calcium influx, and pore formation using YO-PRO-1 dye uptake in response to BzATP stimulation in transfected cells. We found that tagging at the N-terminal of the human P2X7 receptor with the enhanced green fluorescent protein (eGFP) disturbed channel opening and pore formation despite intact surface expression. A triple hemagglutinin (3HA) fused to the N-terminal also disrupted pore formation but not channel opening showing that even a small tag alters the normal function of the receptor. Together, this suggests that in contrast to what has been observed for the rat P2X7 receptor, the human P2X7 receptor contains N-terminal motifs important for signalling that prevent the construction of a functionally active fusion protein.


Assuntos
Canais de Cálcio/metabolismo , Corantes Fluorescentes/farmacologia , Proteínas de Fluorescência Verde/farmacologia , Receptores Purinérgicos P2X7/metabolismo , Transdução de Sinais/fisiologia , Humanos , Transdução de Sinais/efeitos dos fármacos
19.
Artigo em Inglês | MEDLINE | ID: mdl-28919446

RESUMO

The wake-promoting drug Modafinil has been used for treatment of sleep disorders, such as Narcolepsy, excessive daytime sleepiness and sleep apnea, due to its stimulant action. Despite the known effect of Modafinil on brain neurochemistry, particularly on brain dopamine system, recent evidence support an immunomodulatory role for Modafinil treatment in neuroinflammatory models. Here, we aimed to study the effects of in vitro and in vivo Modafinil treatment on activation, proliferation, cell viability, and cytokine production by immune cells in splenocytes culture from mice. The results show that in vitro treatment with Modafinil increased Interferon (IFN)-γ, Interleukin (IL)-2 and IL-17 production and CD25 expression by T cells. In turn, in vivo Modafinil treatment enhanced splenocyte production of IFN-γ, IL-6 and tumor necrosis factor (TNF), and increased the number of IFN-γ producing cells. Next, we addressed the translational value of the observed effects by testing PBMCs from Narcolepsy type 1 patients that underwent Modafinil treatment. We reported increased number of IFN-γ producing cells in PBMCs from Narcolepsy type 1 patients following continuous Modafinil treatment, corroborating our animal data. Taken together, our results show, for the first time, a pro-inflammatory action of Modafinil, particularly on IFN-mediated immunity, in mice and in patients with Narcolepsy type 1. The study suggests a novel effect of this drug treatment, which should be taken into consideration when given concomitantly with an ongoing inflammatory or autoimmune process.


Assuntos
Compostos Benzidrílicos/farmacologia , Fatores Imunológicos/farmacologia , Interferons/metabolismo , Promotores da Vigília/farmacologia , Animais , Compostos Benzidrílicos/uso terapêutico , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Fatores Imunológicos/uso terapêutico , Masculino , Camundongos Endogâmicos C57BL , Modafinila , Narcolepsia/sangue , Narcolepsia/tratamento farmacológico , Narcolepsia/imunologia , Baço/citologia , Baço/efeitos dos fármacos , Baço/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Promotores da Vigília/uso terapêutico
20.
Artigo em Inglês | MEDLINE | ID: mdl-28499899

RESUMO

The wake-promoting drug Modafinil has been used for many years for treatment of Narcolepsy and Excessive Daytime Sleepiness, due to a dopamine-related psychostimulant action. Recent studies have indicated that Modafinil prevents neuroinflammation in animal models. Thus, the aim of the present study was to evaluate the effect of Modafinil pretreatment in the Lipopolysaccharide (LPS)-induced sickness and depressive-like behaviors. Adult male C57BL/6J mice were pretreated with Vehicle or Modafinil (90mg/Kg) and, 30min later, received a single saline or LPS (2mg/Kg) administration, and were submitted to the open field and elevated plus maze test 2h later. After 24h, mice were subjected to tail suspension test, followed by either flow cytometry with whole brain for CD11b+CD45+ cells or qPCR in brain areas for cytokine gene expression. Modafinil treatment prevented the LPS-induced motor impairment, anxiety-like and depressive-like behaviors, as well as the increase in brain CD11b+CD45high cells induced by LPS. Our results indicate that Modafinil pretreatment also decreased the IL-1ß gene upregulation caused by LPS in brain areas, which is possibly correlated with the preventive behavioral effects. The pharmacological blockage of the dopaminergic D1R by the drug SCH-23390 counteracted the effect of Modafinil on locomotion and anxiety-like behavior, but not on depressive-like behavior and brain immune cells. The dopaminergic D1 receptor signaling is essential to the Modafinil effects on LPS-induced alterations in locomotion and anxiety, but not on depression and brain macrophages. This evidence suggests that Modafinil treatment might be useful to prevent inflammation-related behavioral alterations, possibly due to a neuroimmune mechanism.


Assuntos
Compostos Benzidrílicos/farmacologia , Dopaminérgicos/farmacologia , Comportamento de Doença/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Transtornos dos Movimentos/tratamento farmacológico , Receptores de Dopamina D1/metabolismo , Animais , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Ansiedade/patologia , Benzazepinas/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Depressão/tratamento farmacológico , Depressão/metabolismo , Depressão/patologia , Modelos Animais de Doenças , Escherichia coli , Comportamento de Doença/fisiologia , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Modafinila , Atividade Motora/fisiologia , Transtornos dos Movimentos/etiologia , Transtornos dos Movimentos/metabolismo , Transtornos dos Movimentos/patologia , Neuroimunomodulação/efeitos dos fármacos , Neuroimunomodulação/fisiologia , Receptores de Dopamina D1/antagonistas & inibidores , Promotores da Vigília/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA